
ISOLATION AND STRUCTURE OF A MYCOSPORINE FROM THE ZOANTHID PALYTHOA TUBERCULOSA

shosuke Ito and Yoshimasa Hirata

Department of Chemistry, Faculty of Science, Nagoya University, Chikusa, Nagoya 464, Japan

(Received in Japan 5 April 1977; received in UK for publication 27 May 1977)

In the course of our studies on the constituents of the zoanthid <u>Palytoa tuberculosa</u>, we have isolated a water-soluble compound with a sharp absorption maximum at 310 nm. It has been known that near-ultraviolet radiation stimulates reproduction in many fungi, which is accompanied by the formation of water-soluble compounds having a sharp absorption maximum at 310 nm.¹ Favre-Bonvin <u>et al</u>. have recently shown that mycosporine 1, one of these compounds, isolated from <u>Stereum hirsutum</u>, has the structure <u>1</u>.² The UV absorbing compound from <u>Palythoa</u> has now been assigned the structure 2 and named mycosporine-Gly.

Repeated chromatography of aq. EtOH extracts of <u>P</u>. <u>tuberculosa</u> on Dowex 50W, H⁺ form (eluent: water) provided compound <u>2</u> as a pale yellow, amorphous powder; ³ UV (H₂O) λ_{max} 310 nm; PMR (D₂O) δ 2.50 and 2.73 (2H, AB q, J 17 Hz), 2.72 and 2.83 (2H, AB q, J 17), 3.57 (2H, s), 3.64 (3H, s), and 4.24 (2H, s); CMR (Table 1). As the natural product was rather unstable, it was converted by methylation with diazomethane into the stable methyl ester <u>3</u>, ^{3,4} mp 121-122°C (from pyridine-ether); [α]_D -12° (c 0.4 in H₂O); MS m/e 259 (M⁺); UV (H₂O) λ_{max} 307 nm (ϵ 28100), λ_{min} 240-245 nm (ϵ 300). Like mycosporine 1 (<u>1</u>), the compound <u>3</u> was readily aromatized by dehydration. Treatment with Ac₂O-pyridine at 80°C afforded two phenol acetates <u>4</u> [δ 6.38 and 6.47 (each 1H, d, J 2 Hz)] and 5 [δ 7.11 and 7.24 (each 1H, d, J 2 Hz)]. Comparison of chemical and spectral properties of <u>2</u> with those of <u>1</u> led to the structure <u>2</u> (mycosporine-Gly) for the UV absorbing compound from <u>Palythoa</u>. This structure is further supported by the following reaction.

Mycosporine-Gly is remarkably susceptible to hydrolysis. When heated in water at 80°C for 3 hr, it gave glycine and the unstable β -diketone 6; MS m/e 188 (M⁺); UV (H₂O-H⁺) λ_{max} 268 nm, (H₂O-OH⁻) λ_{max} 294 nm; PMR (D₂O) δ 2.60 and 2.90 (4H, AB q, J 17 Hz), 3.57 (2H, s), and 3.64

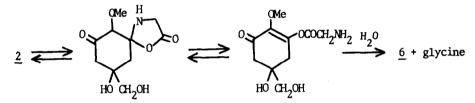

Carbon Number	1	2	3	4	5	6	7	8	9	10
<u>1</u> ²	187.9	132.5	160.5	35.9	74.5	45.4	70.0	61.5		
<u>2</u> ^a	187.2	130.4	159.7	33.8	72.9	45.4	68.4	60.2	43.7	174.5
<u>6</u> ^a	181.0	134.7	181.0	41.4	73.1	41.4	68.5	60.9		
Multiplicity ^b	S	S	s	t	s	t	t	q	t	s

TABLE 1. ¹³C Chemical Shifts (δ in ppm) of <u>1</u>, <u>2</u>, and <u>6</u>.

^aInternal standard: dioxane (67.4 ppm).

^bMultiplicities in the off-resonance decoupled spectra of $\underline{1}$, $\underline{2}$, and $\underline{6}$.

(3H, s). Both the PMR and CMR (Table 1) spectra are fully consistent with the symmetrical structure 6. Under similar conditions the methyl ester 3 was relatively stable, although it was gradually converted to a phenolic compound. Therefore, the facile hydrolysis of 2 should result from an intramolecular participation of the carboxylate anion in the glycine moiety. A plausible reaction mechanism is presented below.

The occurrence of a mycosporine in marine animal is unique, as the mycosporines have so far been found only in fungi. In this connection, it should be noted that a compound showing a sharp absorption maximum at 310 nm has been isolated by Price and Forrest from <u>Physalia physalis</u> which belongs to the same Coelenterata as <u>Palythoa</u>.⁵ They suggested that a function of the compound might be protection of the organism from ultraviolet light.

REFERENCES AND NOTES

- 1. R. E. Hite, Plant Dis. Reptr., 57, 760 (1973), and references cited therein.
- J. Favre-Bonvin, N. Arpin, and C. Brevard, Can. J. Chem., <u>54</u>, 1105 (1976). For another example of mycosporine, see N. Arpin, J. Favre-Bonvin, and S. Thivend, Tetrahedron Lett., 1977, 819.
- 3. These compounds gave satisfactory elemental analyses.
- 4. IR (KBr) 3300, 1740, 1620^{sh}, 1570-1550s cm⁻¹; PMR (D_2O) δ 2.47 and 2.61 (2H, AB q, J 17 Hz), 2.72 and 2.83 (2H, AB q, J 17), 3.56 (2H, s), 3.63 (3H, s), 3.83 (3H, s), and 4.26 (2H, s). This compound exists in the enamine form as depicted; in the PMR spectrum taken in pyr-d₅ the methylene protons in the glycine moiety appeared at δ 4.22 as a doublet (J 6.5 Hz) which became a singlet on the addition of D_2O .
- 5. J. H. Price and H. S. Forrest, Comp. Biochem. Physiol., 30, 879 (1969).